
Generating code with
IBM® Rational® Rhapsody®

Last update: April 2014

© Copyright IBM® Corporation 2014.

Table of Contents
Introduction..4
Basic code generation concepts...5

Components and Configurations..5
Components...5
Configurations...6
Active components and configurations...7
Specifying objects to create when application is run..7
Directory structure of generated code..8
Generation of instrumentation code - animation and tracing...9

Generating code for different parts of a project..10
Triggering code generation – manually and automatically...11
Check model...12
Output window - log tab..13
Viewing generated code...14
Code generation performance..15

Parallel code generation...15
Breaking code generation into chunks...15

Customizing code generation with the Features window and properties.............................17
Customizing file headers and footers..18
Including comments in the generated code..19

Element descriptions...19
Including requirements as comments in the generated code...19

Code formatting...20
Curly brace style...20
Controlling indentation..20
Generating operation arguments on separate lines...21

Controlling the order of elements in the generated code..22
Changing the order of attributes in generated code...22
Changing the order of operations in generated code...22

Code generated for dependencies..23
Controlling how usage dependencies are represented in the code (C, C++)......................23
Code generated for friend dependencies...23

Generating standard operations...24
Statechart code...25
Language-specific code generation features..26

C and C++...26
Generating classes as structs..26
Friend classes...26
Wrapping code with #ifdef-#endif...26
Generating operation descriptions in implementation files..27
Fine-tuning code generated for arguments..27
Fine-tuning code generated for return types..27

Java...28
Including Javadoc comments in the generated code...28
Static imports..28

page 2 out of 33

Defining static blocks..29
Generating JAR files...29
Java 5 annotations...30

Multi-language projects...31
Using documentation generation tools such as Doxygen...32
Code generation with the command line..33

page 3 out of 33

Introduction
One of Rational Rhapsody's most prominent features is its ability to generate code from
your model. This includes both code that can be used for testing and debugging your
model and production-level code. The code generation capability allows you to store your
application as a Rational Rhapsody model and then generate code from the model as
needed.

The purpose of this document is to introduce you to Rational Rhapsody's code generation
capabilities, and to present the various options available to best adapt these capabilities
to your needs.

In order to cover as many aspects of code generation as possible, this document will
avoid going down to the level of step-by-step directions. Rather, it will address the
various options available and point you to where you can find detailed descriptions in the
help.

page 4 out of 33

Basic code generation concepts

Components and Configurations

Components

While container elements such as Packages are provided to help you group the elements
in your model, the grouping of model elements for the purpose of code generation is
carried out by assigning model elements to Components.

Components in your model are used to represent software components. This is reflected
in the Features window for Components, where you can choose whether the Component
represents an executable or a library.

On the Scope tab of the Features dialog, you indicate which elements of your model
should be included in the Component so that they are grouped together both for code
generation and when you build your application from the generated code.

By default, a new Component includes all the code-relevant elements in your model. To
include only a subset of the model elements in the Component, you use the controls
provided on the Scope tab in order to select only those elements that are relevant for the
given software component.

page 5 out of 33

Configurations

For each Component, you can define multiple Configurations.

While Components are used to specify what elements code should be generated for,
Configurations are used to instruct Rhapsody to generate the code differently for different
purposes.

For example:

• You may want to have one Configuration to generate code that includes the
instrumentation code that is necessary in order to animate your model in
Rhapsody, and then use a second Configuration for generating your production
code.

• You may want to have one Configuration for generating code for an application
that will be run on a Windows-based system, and a second Configuration for
generating code for an application that will be run on a VxWorks-based system.

If you look at the various options on the Settings tab of the Features window for
Configurations, you'll probably discover some other ways in which you may want to use
multiple Configurations for generating code for your model.

For each of your Configurations, Rhapsody generates an appropriate main file and
makefile, based on the settings you have chosen.

page 6 out of 33

Active components and configurations

Since your model can contain multiple Components and multiple Configurations for each
Component, you tell Rhapsody which Component and which Configuration to use for code
generation by making one Component the “active” Component, and one Configuration
the “active” Configuration.

Specifying objects to create when application is run

To specify the objects that you want to have created when the application is run, use the
Initialization tab of the Features dialog for configurations.

The Initial Instances section of the tab lists all of the classes in the model. Use the check
boxes to indicate the classes that should be instantiated when the application is run.

In addition to the Initial Instances section, you can use the Initialization code section of
the tab to include your own code for creating objects when the application is run.

The Explicit and Derived options on the Initialization tab affect the
code generation scope:
If you select the Explicit option, code is generated for the classes that
are specified on the Scope tab of the Features dialog for the code
generation component.
If you select the Derived option, code will be generated for the
classes that you indicated should be instantiated, as well as for any
classes which the selected classes require, for example classes that
they have a usage dependency upon, or classes that they have an
association to. The Derived option will also take into account a chain
of dependencies. For example, if class A depends upon class B, and
class B depends on class C, code will be generated for all three
classes if you selected class A.
Note that when the Derived option is used, Rational Rhapsody
ignores the code generation scope that was defined on the
Scope tab of the Features dialog for the component.

page 7 out of 33

Directory structure of generated code

By default, Rhapsody creates a subdirectory in your project directory for each
Component. And under each Component, Rhapsody creates a directory for each
Configuration that you have defined.

However, Rhapsody provides a number of settings that can be used to control the
directory structure used for the generated code. This includes both:

• the ability to specify the output directory for code generation

• the ability to specify the directory structure within the output directory.

To specify the output directory for the generated code:

• Open the Features window for the relevant component.

• On the General tab, use the Directory field to specify the directory to which you
want the code to be generated. You can enter a relative path (beneath the
directory that contains your model), or an absolute path.

To specify the directory structure within the output directory, use one or both of the
following properties:

• [lang]_CG::Package::GenerateDirectory - Set the value of GenerateDirectory to
True to have a directory created for each package. The code generated for
elements in the package will be generated to the directory representing that
package.

• [lang]_CG::Configuration::DefaultSpecificationDirectory and
[lang]_CG::Configuration::DefaultImplementationDirectory - These properties are
available for C and C++ since these languages have separate specification and
implementation files. Use these properties to specify the names of the
subdirectories that should be used to separate the specification files from the
implementation files. For example, you can have all the specification files
generated to a subdirectory called inc and all the implementation files generated to
a subdirectory called src. If you do not provide values for these properties, the
specification and implementation files will be generated to the same directory.

For C and C++ you can choose to use these properties in conjunction with the
GenerateDirectory property. For example, if you specify "inc" as the specification
directory and "src" as the implementation directory, and set the value of
GenerateDirectory to True, you will end up with inc and src subdirectories under
each package directory.

In addition to customizing the directory structure for the generated
code, you can also customize the filename used for a generated file
by modifying the value of the FileName property.

If these standard options are not sufficient to create the directory structure you want for
code generation, there is also an option to map individual model elements to specific
output files and to map individual output files to specific directories. For more details, see
Rational Rhapsody code generation: mapping elements to files and mapping files to
folders.

page 8 out of 33

http://www.ibm.com/support/docview.wss?uid=swg27023613
http://www.ibm.com/support/docview.wss?uid=swg27023613
http://www.ibm.com/support/docview.wss?uid=swg27023613

Generation of instrumentation code - animation and tracing

To use the animation and tracing features to test your application, select Animation or
Tracing from the Instrumentation Mode drop-down list on the Settings tab of the Features
window for configurations.

If you use animation or tracing, Rational Rhapsody must also generate the code that
makes these features possible.

The following snippets of generated code illustrate this.

Code for configuration without animation:
Printer::Printer(IOxfActive* theActiveContext) {
 setActiveContext(theActiveContext, false);
 initStatechart();
}

Code for configuration that includes animation:
Printer::Printer(IOxfActive* theActiveContext) {
 NOTIFY_REACTIVE_CONSTRUCTOR(Printer, Printer(), 0,
Default_Printer_Printer_SERIALIZE);
 setActiveContext(theActiveContext, false);
 initStatechart();
}

Since you can create multiple code generation configurations for each component in your
model, you can create a configuration that includes the code necessary for animation or
tracing, and a separate configuration which generates only the code necessary for your
application.

page 9 out of 33

Generating code for different parts of a project

Rhapsody allows you to generate the code for your entire project at once.

However, as your model grows in size, it may not be very efficient to generate code for
the entire project each time.

You can generate code for smaller slices of your project by selecting one of the following
code generation options:

• the currently active configuration

• the currently active configuration, along with the corresponding configurations in
all components on which the current component depends

• the currently selected classes (you can use the multiple-select feature to select
multiple classes in the browser

page 10 out of 33

Triggering code generation – manually and automatically

You can use the various code generation options in the main menu and in the context
menus in order to manually trigger code generation at any point in your work.

In addition, you can have code generation triggered automatically be using one of the
DMCA options.

DMCA (Dynamic Model-Code Associativity) is designed to bind the model and code
together such that changes made to the model are immediately reflected in the code if
the code editor window is open. Similarly, changes made to the code in the code editor
are automatically reflected in the model.

If you want to use DMCA, you can select from the following options:

• Code Generation – changes to the model are automatically reflected in the code
but not vice versa

• Roundtrip – changes made directly to the code are automatically reflected in the
model but not vice versa

• Bidirectional – changes to the model are automatically reflected in the code, and
direct changes to the code are automatically reflected in the model

If you set DMCA to Code Generation or Bidirectional, then you do not have to trigger
code generation manually if the relevant file is currently open in the code editor. The
relevant code is generated or updated whenever you make a change to the model.

Note that even if you do not want to use DMCA on a regular basis, it is an excellent
way to test what code changes will result from specific changes to the model – both
changes made through the Features dialog and changes made by modifying the
value of a property.

The most efficient way to use DMCA to test such model changes is to keep the
relevant windows open simultaneously:

1. Set DMCA to Code Generation temporarily (if you do not always use it).

2. Open the section of code that represents the element you will be modifying.

3. Open the Features dialog to the relevant tab or find the relevant property in the
Properties tab of the dialog.

4. Align the Features dialog and the code window so that you can see both
simultaneously.

5. Make the change in the Features dialog and press Apply.

6. Click in the code window.

As soon as the code windows gets the focus, the code is updated to reflect the
change.

page 11 out of 33

Check model

Rhapsody's Check Model feature checks your model for various types of modeling errors.

You can manually invoke model-checking at any time.

In addition, model-checking is automatically carried out before code is generated.

The Check Model tab in the Output window displays any problems found during model-
checking. The problems detected are categorized as Errors or Warnings.

Some of these problems block the generation of code. For other problems, the details of
the problem are displayed but code is still generated.

All of the model-checking results are also displayed in the Log tab of the Output window,
however, the Check Model tab includes additional capabilities, such as the ability to jump
to the problematic model element by double-clicking the relevant line in the Check Model
results.

For manually-invoked model checking, you can decide which of the
predefined checks should be carried out. For the model check carried
out prior to code generation, you can also control which checks
should be carried out, however, some checks cannot be turned off.

page 12 out of 33

Output window - log tab

Any time you generate code, Rhapsody displays messages in the log tab of the Output
window.

These messages include:

• error messages (for errors that block code generation)

• warning messages (for issues that do not prevent code generation)

• code generation progress messages

Note that messages are displayed in the Output windows both for manually-invoked code
generation and for automatic code generation triggered by the DMCA setting.

page 13 out of 33

Viewing generated code

Rhapsody contains an internal code editor that you can use to view generated code and
to make changes to code.

To view the generated code in the internal editor, just select the relevant element in the
browser, for example, a class, and select Edit Code from the pop-up menu.

You also have the option to specify an external code editor that should be opened
whenever you select Edit Code. To specify the external editor to use, modify the value of
the property General::Model::EditorCommandLine.

page 14 out of 33

Code generation performance

After initial code generation for a configuration, code is generated only for elements that
were modified since the last generation.

This provides a significant performance improvement by reducing the time required for
generating code.

Rational Rhapsody provides a number of options that can be used to further improve
code generation performance. Depending on the size and nature of your model, you may
want to use different combinations of these options.

Parallel code generation

Beginning in version 8.0, the default code generation behavior is to use parallel
processing in order to improve code generation performance. Parallel code generation is
carried out by launching multiple RhapsodyCL processes.

Parallel code generation is used when you select one of the following code generation
options:

• configuration "with dependencies"
• "entire project"

A number of properties are provided to allow you to:

• determine how many parallel code generation processes are launched
• specify a script that handles the distribution of these RhapsodyCL processes, for

example, by having each such process run on a separate computer
• disable parallel code generation

You can control the use of parallel code generation by modifying the values of the
following properties.

• CG::General::ParallelCodeGeneration

• CG::General::UserDefinedParallelProcesses

• CG::General::ParallelCodeGenerationCommand

For details on the use of these properties, see the Rational Rhapsody IC.

Breaking code generation into chunks

When working with extremely large projects, you may encounter memory-related
problems when trying to generate code for the entire model. To overcome such problems,
you can use the [lang]_CG::Configuration::ClassesPerCGCall property to break up the
code generation process into a number of distinct chunks.

Use the property to specify the maximum number of classes that should be included in a
single code generation "chunk". Above this number, the code generation action will be
broken into a number of smaller code generation actions.

For example, if you specify 500 for the value of the property, then if your model has 501-

page 15 out of 33

1000 classes, Rational Rhapsody will try to break the code generation action into two
smaller code generation actions.

Note: While the property name includes the term "classes", this number also takes into
account similar model elements, such as actors and files.

page 16 out of 33

Customizing code generation with the Features window and properties

To customize the code that is produced by the Rational Rhapsody code generator, you can
modify settings that are included in the Features window for the element, or you can
modify the values of various code-generation properties.

In general, the options presented in the Features window represent modeling concepts
from standards such as UML and SysML, while properties are used for options that are
directly tied to the code generated, especially options that can vary between
programming languages.

page 17 out of 33

Customizing file headers and footers
You can customize the headers and footers of the source files generated from your
model. When you modify the values of the properties that control the content of the file
headers and footers, you can use a number of keywords to include information such as
the project name and the element name.

For languages that use separate specification and implementation files, the content of the
file header is controlled by the properties [lang]_CG::File::SpecificationHeader and
[lang]_CG::File::ImplementationHeader. For programming languages that don't have
such a distinction, the content of the file header is controlled by the property
[lang]_CG::File::Header.

For languages that use separate specification and implementation files, the content of the
file footer is controlled by the properties [lang]_CG::File::SpecificationFooter and
[lang]_CG::File::ImplementationFooter. For programming languages that don't have such
a distinction, the content of the file footer is controlled by the property
[lang]_CG::File::Footer.

The values of the header and footer properties can contain any of the following
keywords:

• $ProjectName - the name of the project

• $ComponentName - the name of the component

• $ConfigurationName - the name of the configuration

• $ModelElementName - the name of the element mapped to the file. If there
is more than one element mapped to the file, the text used is the name of the
first element

• $FullModelElementName - the name of the element mapped to the file,
including the full path. If there is more than one element mapped to the file, the
text used is the name of the first element

• $CodeGeneratedDate - the date on which the file was generated

• $CodeGeneratedTime - the time at which the file was generated

• $RhapsodyVersion - the version of Rational Rhapsody that generated the file

• $Login - the user who generated the file

• $CodeGeneratedFileName - the name of the generated file

• $FullCodeGeneratedFileName - the name of the generated file, including the
relative path, starting with the name of the directory that represents the
component

page 18 out of 33

file:///:SpecificationHeader
file:///:ImplementationHeader
file:///:SpecificationHeader
file:///:Header
file:///:ImplementationHeader
file:///:SpecificationHeader

Including comments in the generated code

Element descriptions

The Features window for model elements contains a Description tab that you can use to
provide a description of the model element. These element descriptions are generated as
comments that precede the code that is generated for the model element itself.

You can customize the content of these comments by modifying the value of the
DescriptionTemplate property for the element.

In addition to providing plain text for the DescriptionTemplate property, you can use
various keywords in order to include information that you have defined in the model, for
example $FullName or $Arguments.

For detailed information on using the DescriptionTemplate property and the keywords
that can be included, see the topic “Customize element descriptions in generated code” in
the IC and the description of DescriptionTemplate in the property help pane of the
Features window.

Including requirements as comments in the generated code

To facilitate the tracing of requirements to code and vice versa, you can specify that the
code generated should include comments that represent the requirements that are met
by each code element.

Note: This feature can be used for C, C++, or Java code.

To include requirements as comments in the generated code:

1. Associate the requirement with the relevant model element

2. Open the Features window for the relevant configuration, and on the Settings tab
select the Include Requirements as Comments in Code option. (This controls the
value of the CG::Configuration::IncludeRequirementsAsComments property.)

3. Generate code.

The requirement comments can be generated in the specification file, the implementation
file, or both.

For more information, see the topic titled “Including requirements as comments in
generated code” in the IC.

page 19 out of 33

Code formatting
You can control the following aspects of code formatting in the code that Rational
Rhapsody generates:

• curly brace style

• indentation

• operation arguments on separate lines

Curly brace style

To accommodate various coding styles, Rational Rhapsody allows you to specify where
curly braces should be placed for namespaces, classes, operations, enums, structs, and
unions.

Curly brace style is controlled by the following properties:

 <lang>_CG::Package::OpeningBraceStyle (for namespaces that have been defined)

 <lang>_CG::Class::OpeningBraceStyle

 <lang>_CG::Operation::OpeningBraceStyle

 <lang>_CG::Type::OpeningBraceStyle

For each of these properties, the possible values are:

 SameLine

 NewLine

Each of these properties can be set from the project level downward. So if you want all
the classes in your project to use a certain curly brace style, you would set the value of
the <lang>_CG::Class::OpeningBraceStyle property at the project level.

Controlling indentation

You can specify the number of spaces that should be used for indentation when code is
generated.

This option is controlled by the Indentation property.

This property takes integer values representing the number of spaces you want to use for
each indent.

Note: The Indentation property does not affect the indentation used in operation bodies
since they consist of user-provided code.

page 20 out of 33

Generating operation arguments on separate lines

When generating code for operations, you have the option of having each operation
argument generated on a separate line.

This option is controlled by the MultiLineArgumentList property.

If you set the value of the property to False, the generated code looks like this:

void displayBatteryInfo(double percentLeft, int minutesLeft, bool
isCharging);

If you set the value of the property to True, the generated code looks like this.
void displayBatteryInfo(double percentLeft,
 int minutesLeft,
 bool isCharging);

page 21 out of 33

Controlling the order of elements in the generated code

Changing the order of attributes in generated code

By default, attributes are displayed in alphabetical order.

In some cases, you might want to define a specific order for the attributes when the code
is generated. To change the order of appearance in the generated code:

1. Right-click Attributes on the browser and select Edit Order of Attributes.

2. In the window that opens, highlight the attribute that you want to move and use
the Up and Down buttons to modify the order that is to be used in code
generation. If the Up and Down buttons are disabled, clear the Use Default Order
check box to enable them.

3. Click OK.

To restore the default order, select the Use Default Order check box and click OK.

Changing the order of operations in generated code

By default, operations appear in the following order in generated code:

• Constructors and destructors

• User-defined operations

• Triggered operations

Within each of these categories, the operations are displayed in the following order:
public, protected, private. Within these access subcategories, operations are listed
alphabetically.

In some cases, you might want to define a specific order for the operations when the
code is generated. To change the order of appearance in the generated code:

4. Right-click Operations (or Functions) on the browser and select Edit Operations
Order (or Edit Functions Order).

5. In the window that opens, highlight the signature that you want to move and use
the Up and Down buttons to modify the order that is to be used in code
generation. If the Up and Down buttons are disabled, clear the Use Default Order
check box to enable them.

6. Click OK.

To restore the default order, select the Use Default Order check box and click OK.

page 22 out of 33

Code generated for dependencies
If you create a “usage” dependency between a class and a class that it depends on, a
corresponding #include directive will be generated for C or C++ code. In Java code, an
import statement will be generated if the class is in a different package.

In C and C++, where the order of dependencies can be significant, you can modify the
order of the dependencies in the generated code by right-clicking the Dependencies
category in the browser and selecting Edit Dependencies Order.

Details on using the Edit usage dependencies order window can be found in the IC in the
topic titled “Changing the order of usage dependencies in generated code”.

Controlling how usage dependencies are represented in the code (C, C++)

The property CG::Dependency::UsageType can be used to control the way usage
dependencies are represented in the generated code.

For example, you can generate:

• a forward declaration in the specification file

• an #include statement in the specification file

• a forward declaration in the specification file and an #include statement in the
implementation file

Note that the code generated also depends on the value of the property
[lang]_CG::Dependency::GenerateForwardDeclarations. If GenerateForwardDeclarations
is set to True, code is generated as described above. However, if
GenerateForwardDeclarations is set to False, then the specification file will not contain a
forward declaration regardless of the value of the property UsageType.

For more details on using these properties, see the property documentation in the
property help pane of the Features window.

Code generated for friend dependencies

If you add a “friend” dependency from one class to another, the dependent class will
contain a forward declaration for the friend class in addition to the declaration with the
“friend” specifier within the class itself.

page 23 out of 33

Generating standard operations
Rational Rhapsody provides a mechanism for including standard operations in generated
code.

The mechanism for generating standard operations involves:

• specifying the code for each standard operation in the site.prp file

• specifying which of the standard operations should be generated for a specific class
by listing the operations in the value of the property
CG::Class::StandardOperations

For more information, see the topic titled “Generating standard operations” in the IC.

page 24 out of 33

Statechart code
When you generate code, Rational Rhapsody generates code to represent statecharts
that you have created.

In general, this is not code that you are going to modify directly, however, there are a
number of points worth knowing about statechart code:

• All classes with statecharts inherit from OMReactive

• Statechart methods are preceded by an annotation such as:
//## statechart_method

• The action code that you define for transitions is enclosed in annotations such as:
//#[transition 1
print;
//#]

• The action on entry and action on exit code that you define for an action is
enclosed in annotations such as:

//#[state state_1.(Entry)
entry_action_for_state_1();
//#]

and

//#[state state_1.(Exit)
exit_action_for_state_1();
//#]

page 25 out of 33

Language-specific code generation features

C and C++

Generating classes as structs

While class elements are ordinarily generated as C++ classes, you can specify that one
or more classes should be generated as structs by changing the value of the property
CPP_CG::Class::GenClassAsStruct.

Friend classes

You can define friend classes and friend functions in your model, and the appropriate
C++ code will be generated.

To define a friend class:

1. Add a dependency from the class whose data will be made available to the class
that needs to access this data.

2. Apply the Friend stereotype to the dependency.

If the dependency is drawn from class A to class B, the code generated for class A will
contain the following declaration:

friend class B;

To define a Friend function:

1. Add a dependency from the class whose data will be made available to the function
that needs to access this data.

2. Apply the friend stereotype to the dependency.

If the dependency is drawn from class A to function getInfo(), the code generated for
class A will contain the following declaration:

friend void getInfo();

For more information on using friend classes and friend functions, see
the topic “Code generation for friend classes and functions” in the
Rhapsody IC.

Wrapping code with #ifdef-#endif

If you need to wrap elements such as classes or operations with an #ifdef #endif pair,
add a compiler-specific keyword, or add a #pragma directive, you can set the
SpecificationProlog, SpecificationEpilog, ImplementationProlog, and
ImplementationEpilog properties for the element.

For more information, see the topic “Wrapping code with #ifdef-#endif” in the Rhapsody
IC.

page 26 out of 33

Generating operation descriptions in implementation files

The text that was entered on the Description tab of the Features window for an operation
is generated as a comment before the declaration of an operation.

Using the properties GenerateDescriptionInImplementation and
DescriptionInImplementation, you can have a descriptive comment generated in the
implementation file as well.

For more information on the use of these two properties to control operation descriptions
in the generated code, see the topic “Generating operation descriptions in
implementation files” in the Rhapsody IC.

Fine-tuning code generated for arguments

You can use the Code pattern field in the Features window for arguments to fine-tune the
code that is generated for the arguments of a specific operation or event.

If you want to modify the code generated when a given class, type, or event is used as
an operation or event argument anywhere in your model, you can modify the value of the
relevant In, Out, InOut, or TriggerArgument property at the class, type, or event level.

For more information on using the Code pattern field and the In, Out, InOut, and
TriggerArgument properties, see the topic “Fine-tuning code generated for arguments” in
the Rhapsody IC.

Fine-tuning code generated for return types

The mechanism used for fine-tuning the code generated for return types is similar to that
used for the code generated for arguments.

You can use the Code pattern field on the General tab of the Features window for
operation to fine-tune the code that is generated for the return type of a specific
operation.

If you want to modify the code that is generated when a given class, type, or event is
used as the return type of an operation anywhere in your model, you can set the value of
the ReturnType property at the class, type, or event level.

For more information on using the Code pattern field and the ReturnType property, see
the topic “Fine-tuning code generated for return types” in the Rhapsody IC.

page 27 out of 33

Java

Including Javadoc comments in the generated code

Rational Rhapsody provides a mechanism for including Javadoc comments when code is
generated for a Java model.

This mechanism is turned on, by default, for Java projects.

In the generated code, you see Javadoc comments based on the descriptions you have
provided for model elements. Comments for operations also include any descriptions you
have provided for operation arguments.

In addition to generating these basic Javadoc comments, you can have Rational
Rhapsody include the following standard Javadoc tags: author, deprecated, return, see,
since, and version.

Once your code includes Javadoc comments, you can generate a Javadoc report using the
standard Javadoc process.

For more details on including Javadoc comments in the generated code and customizing
these comments, see the section titled “Javadoc comments” in the Rhapsody IC.

Static imports

You can model static imports and Rational Rhapsody generates the appropriate code. In
addition, the reverse engineering feature can handle static imports in Java code, and the
roundtripping feature can handle changes to static import statements.

You can model both static import of individual class members (import static
java.lang.Math.PI) and static import of all static members of a class (import static
java.lang.Math.*).

To add static imports to your model:

1. Create a dependency in the browser or by drawing a dependency in an object
model diagram. The dependency can be from a class to a class or from a class to
an individual static attribute or operation.

2. Open the Features window for the dependency you created, and apply the
StaticImport stereotype to it.

When you next generate code, the code for the dependent class contains the appropriate
static import statement.

For more information on using static imports, see the section titled “Static import
constructs” in the IC.

page 28 out of 33

Defining static blocks

Rational Rhapsody allows you to add static blocks to Java classes in your model, and
generates appropriate code for such blocks.

To add a static block to a class:

1. Right-click the class in the browser and select Add New > StaticBlock.
(Alternatively, right-click the class in an object model diagram and select New
StaticBlock.)

2. Open the Features window for the newly created static block, and on the
Implementation tab enter the code for the body of the block.

You can switch a static block to an operation and vice versa.

To change a static block to an operation, right-click the static block in the browser and
select Change To > Primitive Operation.

To change a primitive operation to a static block, right-click the operation in the browser
and select Change To > Static Block.

For more details on using static blocks, see the topic titled “Static blocks” in the IC.

Generating JAR files

For Java projects, you have the option of specifying that a JAR file should be generated
when you build your project.

To specify that a JAR file be created as part of the build process:

1. Open the Features window for the relevant configuration.

2. On the Settings tab, select the Generate JAR File option.

The JAR file generation mechanism is controlled by the following properties:

• JAVA_CG::Configuration::JarFileGenerate - a Boolean property that
determines whether a JAR file is generated as part of the build process.

• JAVA_CG::Configuration::JarFileGeneratorCommand - specifies the jar
command that is carried out if the JarFileGenerate property has been set to
True.

page 29 out of 33

Java 5 annotations

Rational Rhapsody allows you to use Java annotations in your model and to have these
annotations included in your generated code.

The detailed steps for using Java annotations can be found in the IC in the topic titled
“Java 5 annotations”.

The basic steps for using this feature are as follows:

1. Create an AnnotationType by right-clicking a package or class and selecting the
relevant option from the pop-up menu.

2. Open the Features window for the Annotation Type you created, and use the
Elements tab to add the information you want to include for the annotation.

3. Create a JavaAnnotation by right-clicking a package and selecting the relevant
option from the pop-up menu. When the Add Java Annotation window is displayed,
select the relevant AnnotationType.

4. Open the Features window for the JavaAnnotation you created and assign values
to each of the annotation elements.

5. Associate the JavaAnnotation you created with one or more model elements by
drawing a dependency from the model element to the JavaAnnotation, and
applying the AnnotationUsage stereotype to the dependency.

After carrying out these steps, when you generate code, the annotation is generated for
the relevant model element.

page 30 out of 33

Multi-language projects
If you have the necessary license for multi-language projects, you can create a single
model that contains units that are associated with different programming languages. A
model can include units associated with C, C++, or Java. Code can then be generated in
the appropriate language for each unit.

When you use the Create Unit option to create a unit for a specific model element, the
Unit Information window provides a list that allows you to select a specific language for
the unit. The default language for a new unit is the language of its owner unit.

For code generation to work properly for multi-language projects, you have to adhere to
the following rules:

• To generate code for units in a certain language, the appropriate language must be
specified at the component level. You specify the language of the component by
selecting a language on the Scope tab of the Features window for the component.

• Elements included in the scope of a component must be of the same language as
the component.

For more information on using multi-language projects, see the topic titled “Planning
multiple development language projects” in the IC.

page 31 out of 33

Using documentation generation tools such as Doxygen
For Java models, Javadoc comments are generated by default.

For other languages, if you would like to use documentation generation tools such as
Doxygen, you can generate comments with the required format by modifying the value of
the property <lang>_CG::Configuration::DescriptionBeginLine. There is also a
corresponding property - <lang>_CG::Configuration::DescriptionEndLine - that can be
used to specify the symbols for the end of comment lines.

page 32 out of 33

Code generation with the command line
You can carry out code-related actions from the command-line, using RhapsodyCL.exe.

RhapsodyCL allows you to use code-related functions, such as generate and make, in
contexts where you do not require the GUI elements of Rational Rhapsody, for example,
as part of a nightly build procedure.

The actions you can carry out include:

• buildentire
Builds the entire project

• buildwithdep
Builds a component with all its dependencies

• generate
Generates code for a specific component and configuration

• genwithdep
Generates a component with all its dependencies

• gmr
Performs generate/make/run

• make
Builds the application, using the current configuration

• rebuildentire
Rebuilds the entire project

• rebuildwithdep
Rebuilds a component with all its dependencies

• regenerate
Regenerates the code for the specified component and configuration

• regenentire
Regenerates the code for the entire project

• regenwithdep
Regenerates the code for a component with all its dependencies

• roundtrip
Roundtrips code changes back into the model

• setcomponent
Sets the active component

• setconfiguration
Sets the active configuration

These commands can be carried out individually from the command-line, or they can be
combined in batch files.

For details of the syntax to use for these commands, see the topic titled “Command-line
commands” in the IC.

page 33 out of 33

	Introduction
	Basic code generation concepts
	Components and Configurations
	Components
	Configurations
	Active components and configurations
	Specifying objects to create when application is run
	Directory structure of generated code
	Generation of instrumentation code - animation and tracing

	Generating code for different parts of a project
	Triggering code generation – manually and automatically
	Check model
	Output window - log tab
	Viewing generated code
	Code generation performance
	Parallel code generation
	Breaking code generation into chunks

	Customizing code generation with the Features window and properties

	Customizing file headers and footers
	Including comments in the generated code
	Element descriptions
	Including requirements as comments in the generated code

	Code formatting
	Curly brace style
	Controlling indentation
	Generating operation arguments on separate lines

	Controlling the order of elements in the generated code
	Changing the order of attributes in generated code
	Changing the order of operations in generated code

	Code generated for dependencies
	Controlling how usage dependencies are represented in the code (C, C++)
	Code generated for friend dependencies

	Generating standard operations
	Statechart code
	Language-specific code generation features
	C and C++
	Generating classes as structs
	Friend classes
	Wrapping code with #ifdef-#endif
	Generating operation descriptions in implementation files
	Fine-tuning code generated for arguments
	Fine-tuning code generated for return types

	Java
	Including Javadoc comments in the generated code
	Static imports
	Defining static blocks
	Generating JAR files
	Java 5 annotations

	Multi-language projects
	Using documentation generation tools such as Doxygen
	Code generation with the command line

